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Charged singularities: the causality violation 

F de Felice?, L Nobili? and M CalvaniS 
t Institute of Physics,-University of Padova, Italy 
t Institute of Astronomy, University of Padova, Ital: 

Received 6 March 1980, in final form 22 May 1980 

Abstract. We search for examples of particle trajectories which, approaching a naked 
singularity from infinity, make up for lost time before going back to infinity. In the 
Kerr-Newman metric we found a whole family of such trajectories, showing therefore that 
the causality violation is indeed a non-avoidable pathology. 

1. Introduction 

It is well known (Tippler 1976) that closed time-like paths may exist in the field of a 
naked singularity (NS). These paths imply the possibility that any two points of the 
space-time manifold can be connected by either a future or past directed time-like path. 
This is the case for the Kerr and Kerr-Newman NS solutions (Carter 1968). 

Here closed time-like paths are found in a restricted region of space-time where the 
axial Killing vector becomes time-like. A time-like path entering this region was 
believed to travel into the past with respect to an observer at infinity. 

In a previous work, however, it was shown that entering this region is not a sufficient 
condition for this peculiar phenomenon to take place; in fact, a more stringent condition 
has to be satisfied on the path itself, that is the gradient of the coordinate time has to 
vanish and become negative (Calvani et a1 1978). Now, while the former (necessary) 
condition is satisfied at a given space-time point independently of the path, the 
sufficient condition (cv condition) does depend on the path so that one has to locate, on 
each path, where this condition is satisfied. 

It was found that, on a particular class of time-like geodesics in the Kerr metric, the 
cv condition was never satisfied because these trajectories had a turning point just 
before. This suggested the possibility that no unbound path violated causality in the 
sense of never satisfying the sufficient condition. The first attempt to generalise our 
previous result was to consider the null geodesics (de Felice and Calvani 1979), and we 
found that some of them did violate causality although under restrictive conditions. 

The objection remains that an arbitrary path (particle moving with an arbitrary 
acceleration) could always be thought as being able to violate causality (with respect to 
infinity). 

One example of non-geodesic equations of motion which have been completely 
solved is given by those of a charged particle in the Kerr-Newman family of space-time 
solutions of Einstein’s equations. Here the term which regulates the trajectory of the 
particle is its charge. Our aim is therefore to investigate whether a charged particle can 
be steered to the fulfilment of its cv condition. 
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In this paper we explicitly find a family of accelerated trajectories which do fulfil 
their cv condition before meeting a turning point and going back to infinity. In 0 2 we 
consider the Kerr-Newman space-time and define the necessary and sufficient condi- 
tions for causality violation with respect to infinity, and then we specialise them to the 
generalised radial trajectories (vortical motion, de Felice and Calvani (1972), Bicak and 
Stucklik (1976)). In 0 3 we prove that particles oppositely charged to the source and 
moving on radial trajectories can violate causality. Throughout the paper geometrised 
units are used with C = G = 1. 

The Kerr-Newman space-time and the conditions for causality violation 

The Kerr--Newman space-time solution is the charged generalisation of the Kerr 
solution, and reads in oblate spheroidal coordinates 

A sin2 e A 
ds2=--(dt-a  sin’ edq5)’+-[(r2+a2)dq5-a dt]’+-dr2i-Xde2 x z z 
where 

A = r2 + u 2  + Q2 - 2Mr, x=r2+u2cos’e .  (2) 

Here M, a and Q are the mass, the specific angular momentum and the charge of the 
metric source. 

The necessary condition for causality violation is given, as is well known, by 

g4+ = (A/C) sin2 8 s 0 (3) 

A=(r2+a2)’-a2Asin28.  (4 ) 

where 

Condition (3) identifies the region (hereafter called the q5 region) where the axial Killing 
vector is no longer space-like; it implies 

A s 0  ( 5 )  

which leads to 

sin2 6 = @ 2 a ( r 2 + a 2 ) 2 / a 2 A = @ i .  (6) 

a2 + Q2 > M 2  (7) 

Hereafter we shall assume that the naked singularity condition holds: 

which implies A > 0 always. 
The boundary of the q5 region, where the axial Killing vector becomes null, is given 

by the function @: in (6). It is obvious that @$ > 0 always, while @; = 1 (8 = 7r/2) where 

(8) 
this function is shown in figure l ( b ) .  The loci of points where Q? in (8) attains a 
minimum value and where it is zero (besides r = 0) are given by the functions 

Q2 = (r/a2)[r3 + a2(r + 2 M ) ]  = Q:; 

respectively; these are shown in figure l (u) .  With the help of figures l ( a )  and l ( b )  one 
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Figure 1. ( a )  The functions a: and a: are shown; they give respectively the minima and 
zeros of Q: for a chosen value of a, e.g. ao. ( b )  The function Q: is shown; it gives the locus 
where @: = 1 for a chosen value of Q, e.g. Qo. (c) The function 0: in (6)  is shown. 

can immediately recognise the shape of the 4 region, as shown in figure l(c), for a given 
value of 0. One clearly sees that now, contrary to what happens in the Kerr metric, the 
4 region extends to positive r. 

We have already pointed out that a general time-like path which enters the 4 region 
is liable to violate causality with respect to infinity. However, this happens only if 
somewhere on the path 

dt/dA = 0 (10) 

where A is a parameter on the world line. This condition is consistent with the path 
being time-like if and only if g++ < 0, so that the point where (10) holds is inside the 4 
region. 

Because of the electromagnetic interaction, a test particle of mass ,U and charge e 
will not move along a geodesic; nevertheless the equations of motion have been solved, 
and read (Carter 1968) 

Z dt/dA = - a ( a E  sin2 t9 - 1) + (r2 + a2)P/A,  

dr/dA = + { P 2 - A [ ~ L r 2 + ( l - a E ) 2 + ( ( L - 1 2 ) ] } 1 / 2 ,  
(1 1) I;dt9/dA=*{(L-l2)-cos2 B[a2(F2-E?)+l2/sin2 t9]}1'2, 

Z d4/dA = - (aE - l/sin2 6 )  + aP/A,  

where P = E(r2  + a 2 )  - a1 - eOr. Here the parameters E and 1 are the total energy with 
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respect to infinity and the axial angular momentum of the particle, while L is related to 
the square of the total angular momentum (de Felice 1980). 

From the first equation of ( l l ) ,  the condition dt/dA = 0 identifies a well defined 
spatial region (hereafter called cv region) which depends on the test particle’s 
parameters. Solving equation (10) with respect to sin’ 8 = @&, one has 

Q2-2Mr 1 eQr(r2+a2) 
0:” = a)$+ a A  k)- a2AE 

Let us now point out that from ( 2 )  and (4), the condition A < 0 implies 

2Mr - Q’ < 0 ;  ( 1 3 )  
furthermore the requirement that the cv region is always inside the 4 region implies 

We shall now consider a particular class of trajectories which can cross the 4 region, 
that is the generalised radials; these are of the vortical type and are confined on the 
hyperboloids 8 = constant with parameters given by 

l=EaJFsin28, €=*I, (15) 

where r =  E z - p 2 .  Let us assume that r>O (unbound motion) and call P = eQ, 
G = [ ( I ‘ + l ) / r ] ’ / 2 ;  condition ( 1 2 )  now becomes 

3. Causality violating trajectories 

As we said in the Introduction, the most interesting situation arises when the test 
particle is endowed with a charge. In order to violate causality with respect to infinity, 
the test particle should enter the cv region, meet a turning point and then go back to 
infinity. We shall show that this happens for a family of trajectories; these were found 
by comparing the locus of the inversion points with the locus where the condition for 
causality violation, dt/dA s 0, holds. 

The value of @&, equation (12 ) ,  at r = 0, does not depend on p (and is always <1) so 
that, in order to satisfy the condition @&> @$, we must have I > 0, from ( 1 2 )  and ( 1 3 ) .  
The axial angular momentum must therefore have a well defined sign; specialising to 
the generalised radial trajectories, one finds from ( 1 2 )  and ( 1 5 )  that 

r 2 + a 2  G ( r 2 + a 2 ) - p r ( G 2 -  1)’” 
@& = (7) G(r2 + a ’) + (G - 1)( Q 2  - 2Mr)’ 

It is easy to prove that this function is monotonic increasing with r. 
In a previous work (de Felice eta1 1980) it was shown that the repulsive barriers (loci 

of inversion points) for charged particles moving on radial trajectories (with I > 0) are 
given by 

G ( r 2 + a 2 ) + ( G - l ) [  -A--@(-) G + l  ‘I2 *(AV)”’]] ( 1 8 )  a G - 1  
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where 

G + l  'I' 

(G-1)  ' 
77 = Q 2 - 2 M r + 2 p r  - 

Let us first prove that we have always 

@& > (a!. 

After some algebra, this inequality implies 

3639 

(19) 

Let us now consider the following two cases: 

From condition (13) it follows that the inequality (21) is indeed satisfied. 

The inequality (20)  can be written as 

(a) P > O  

(b) P < O  

(G-1)v -pr(G'-l)'''a -[(r2+a2)/A+(G-l)](A~)'/'; (22)  

here 77 must be positive, so relation (22)  is also satisfied; the condition (20)  therefore 
holds, whatever is the sign of p. 

Let us now compare (a& with 0:. Let r" be the solution of 7 = 0, i.e. 

G + l  
G - 1  

we shall be interested in positive i only. In de Felice et a1 (1980) it was shown that at i 

Consider now the following two cases. 

From (24) it follows that @:(r = ?) is always >1,  so that one has to compare (a& only 
with (a!; but then (20)  holds and there is no causality violation (see figure 3 ( a ) ) .  

Causality violation may now occur. After some algebra one can show that 

(4 P > O  

(4 P < O  

@:(r  = r") s 1 when i ~ [ ~ 2 ( G ' - l ) ] ' ~ 2 = r " o  (25)  
and 

O&(r = 3 s 1 when f(3 = i3 + r"oi2/G + a'?- iooa2/G G 0. (26)  

The function f(3 is shown in figure 2:  note that f ( i 0 )  > 0 and f(0) < 0. For the values of 
the parameters a, Q, M and p which correspond to the shaded part of figure 2 0: and 
@kv evaluated at r" are both less than one, and obviously @& > (a: at r". The shape of 
these functions in this case is shown in figure 3(b). One can see that there is a family of 
8 = constant trajectories which enter their cv region before meeting a turning point 
(shaded area in figure 3(b)). 
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Figure 2. The function f(?) is shown; in the shaded area, both CD: and CD& evaluated at Fare 
less than one. 
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Figure 3. ( a )  ‘The functions @$ (loci of inversion points) and CD& are shown. In this case a 
particle moving on a fl =constant trajectory meets a turning point before entering its cv 
region. ( b )  This picture is drawn for a = M = 1, p = - 3, Q2 = 5, G = 2. All the generalised 
radial trajectories entering the shaded area will meet a turning point after having entered 
the cv legion. They can therefore make up for  lost time and go back to infinity. 

4. Conclusions 

The general theory of relativity, although widely accepted as the most satisfactory 
theory for gravity, contains its own limits, as i t  predicts the occurrence of space-time 
singularities (see e.g. Hawking and Ellis 1973). The behaviour of the space-time in 
their vicinity is not yet conipletely understood; it is however remarkable that singulari- 
ties predicted by some exact solutions, like Kerr and Kerr-Newman, lead to pathologies 
which seem to be unavoidable. This is the case for the causality violating paths which 
have been shown to exist (Carter 1968, Tipler 1976). No explicit examples however 
were known o f  time-like paths which violated causality in the sense stated earlier 
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(Calvani eta1 1978, de Felice and Calvani 1979) and which connected the ‘pathological’ 
inner regions of the space-time with the asymptotic ones. In this paper we have a whole 
family of them. A similar example was found by considering null geodesics in the Kerr 
metric (de Felice and Calvani 1979); while in that case the corresponding cv conditions 
were met in the r < 0 part of the metric, which is of a dubious physical significance, here 
this effect takes place in some extended portion of the r > 0 part of the metric, This 
suggests that covering the singularity with a suitable material source may not be 
sufficient to take care of this effect. 

The space-time singularities remain therefore the most challenging problem of 
today’s relativity. 
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